
National Semiconductor

54165/DM74165 8-Bit Parallel-to-Serial Converter

General Description

The '165 is an 8-bit parallel load or serial-in register with complementary outputs available from the last stage. Parallel inputting occurs asynchronously when the Parallel Load (PL) input is LOW. With PL HIGH, serial shifting occurs on the rising edge of the clock; new data enters via the Serial Data (DS) input. The 2-input OR clock can be used to combine two independent clock sources, or one input can act as an active LOW clock enable.

54165/DM74165 8-Bit Parallel-to-Serial Converter

August 1989

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	
54	-55°C to +125°C
DM74	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		54165			Units		
Cymbol	i alameter	Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	VIH High Level Input Voltage VIL Low Level Input Voltage IOH High Level Output Current				2			V
V _{IL}				0.8			0.8	V
lон				-0.8			-0.8	mA
I _{OL} Low Level Output Current				16			16	mA
T _A	T _A Free Air Operating Temperature			125	0		70	°C
t _s (H) t _s (L)	Setup Time HIGH or LOW P _n to PL	10 10			10 10			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW P _n to PL	10 10			0 0			ns
t _s (H) t _s (L)	$b_{s}(L)$ D_{s} to CP_{n} $h(H)$ Hold Time HIGH or LOW $h(L)$ D_{s} to CP_{n} $s(H)$ Setup Time HIGH CP1 to CP2 or CP2 to CP1 $w(H)$ CP_{n} Pulse Width HIGH $w(L)$ \overline{PL} Pulse Width LOW				20 20			ns
t _h (H) t _h (L)					0 0			ns
t _s (H)					30			ns
t _w (H)					25			ns
t _w (L)					15			ns
t _{rec}					45			ns

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Мах	Units	
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -12 \text{ mA}$			-1.5	V		
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max, V_{IL} =$	Max	2.4	3.4		V	
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, V_{IH} = Min$			0.2	0.4	V	
lj	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				1	mA	
IIH	High Level Input Current	$V_{CC} = Max, V_1 = 2.4V$	PL			80	μA	
			Inputs			40		
Ι _{ΙL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$	PL			-3.2	- mA	
			Inputs			-1.6		
los	Short Circuit	V _{CC} = Max	54	-20		-55	mA	
	Output Current	(Note 2)	DM74	-18		-55		
ICC	Supply Current	$V_{CC} = Max, \overline{PL} = \Box \Gamma$ $P_n = \frown, CP_1, CP_2 = 4.5V$				63	mA	

Symbol	Parameter	-	15 pF 400Ω	Units		
		Min	Мах			
f _{max}	Maximum Clock Frequency	20		MHz		
t _{PLH} t _{PHL}	Propagation Delay \overline{PL} to Q7 or $\overline{Q}7$		31 40	ns		
t _{PLH} t _{PHL}	Propagation Delay CP1 to Q7 or Q7		24 31	ns		
t _{PLH} t _{PHL}	Propagation Delay P7 to Q7		17 36	ns		
t _{PLH} t _{PHL}	Propagation Delay P7 to $\overline{Q}7$		27 27	ns		

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time.

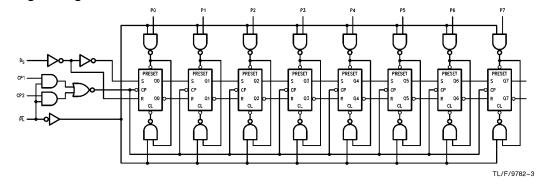
Functional Description

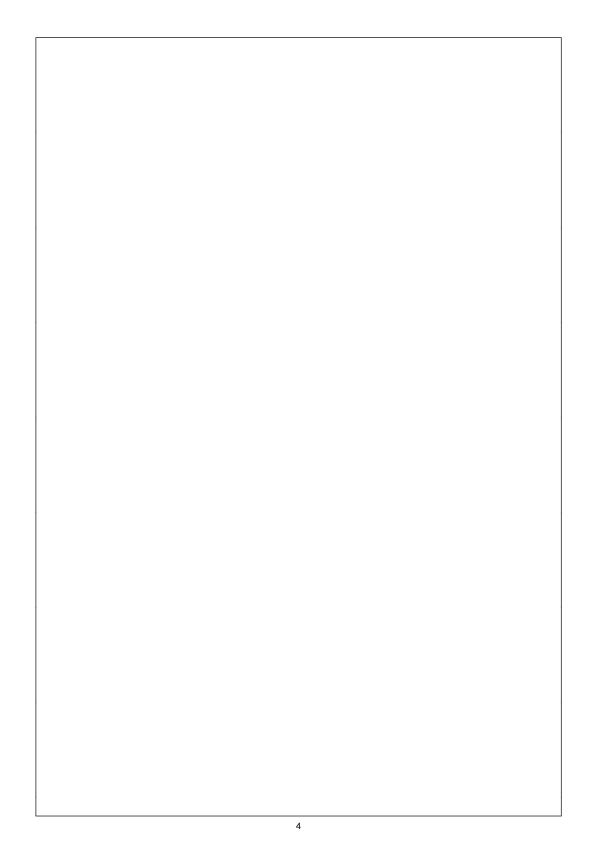
The '165 contains eight clocked master/slave RS flip-flops connected as a shift register with auxiliary gating to provide overriding asynchronous parallel entry. Parallel data enters when the \overline{PL} signal is LOW. The parallel data can change while \overline{PL} is LOW provided that the recommended setup and hold times are observed.

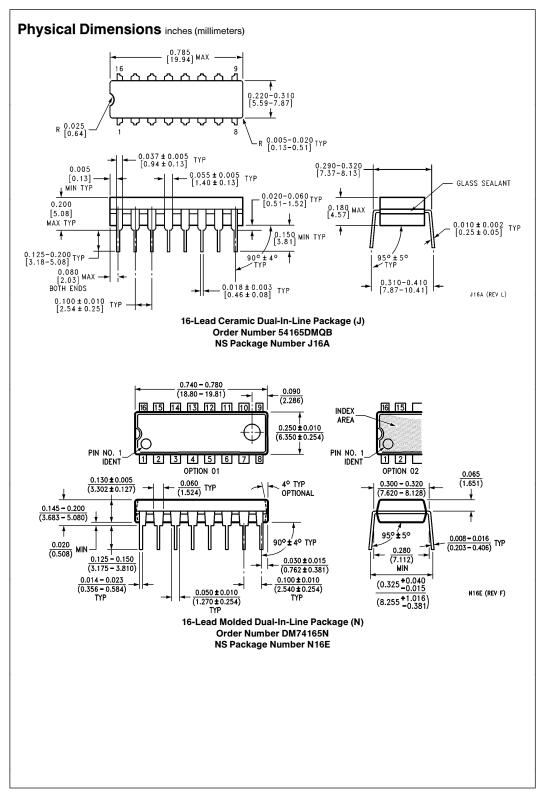
For clocked operation, $\overline{\text{PL}}$ must be HIGH. The two clock inputs perform identically; one can be used as a clock inhibit

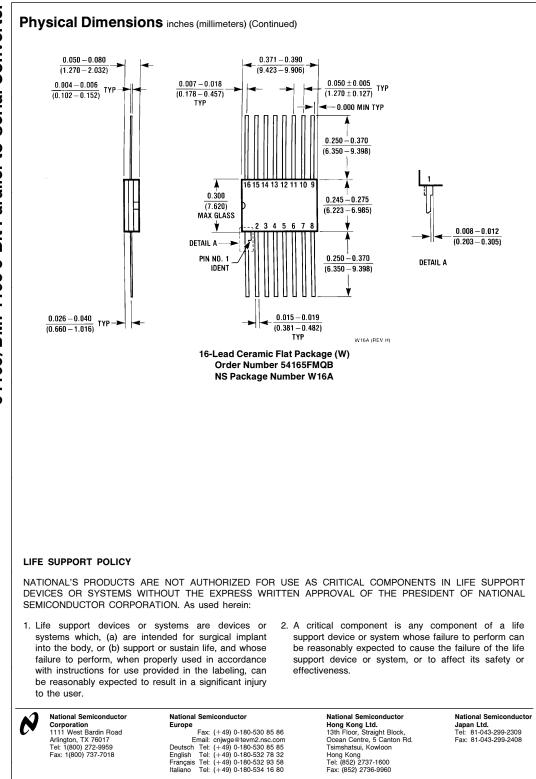
by applying a HIGH signal. To avoid double clocking, however, the inhibit signal should only go HIGH while the clock is HIGH. Otherwise, the rising inhibit signal will cause the same response as a rising clock edge. The flip-flops are edge-triggered for serial operations. The serial input data can change at any time, provided only that the recommended setup and hold times are observed, with respect to the rising edge of the clock.

Truth Table


PL	С	P		Contents								
	1	2	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Response	
L	х	х	P0	P1	P2	P3	P4	P5	P6	P7	Parallel Entry	
н	L		DS	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Right Shift	
н	н		Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	No Change	
н		L	DS	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Right Shift	
Н	~	Н	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	No Change	


H = HIGH Voltage Level


L = LOW Voltage Level


= Positive Rising Edge

Logic Diagram

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

National Semiconductor was acquired by Texas Instruments.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

54165 - http://www.ti.com/product/54165?HQS=TI-null-null-dscatalog-df-pf-null-wwe DM74165 - http://www.ti.com/product/dm74165?HQS=TI-null-null-dscatalog-df-pf-null-wwe